

LCA of different vehicle technologies with a look at future trends

Decarbonisation and Resource Efficiency – 100% Renewable Energy and more Berlin, 8th November 2016

Andrea Del Duce

Project manager/Life Cycle Analyst Quantis Schweiz/Deutschland

Rainer Zah

Managing director Quantis Schweiz/Deutschland

What is Life Cycle Assessment

Life cycle assessment

- Vision for multiple emissions, resource use and wastes
- Identification of hot-spots
- Deliver science-based decision-making tools

Why LCA?

LCA prevents burden-shifting

From one life cycle stage to another
From one region to another
From one compartment (water, air, ground) to another
From one impact to another ...

Emissions displaced, not eliminated

Trends for the future of mobility

Life Cycle Assessment of vehicles: today to 2050

LCA of future passenger vehicle transport assuming:

- Compact class vehicle (ICE, BEV, PHEV)
- Efficiency improvements in chassis and drivetrains
- Energy portfolio based on Swiss BFE Scenarios to 2050
- Battery developments estimations

У

Peter de Haan, Rainer Zab

Chancen und Risiken der Elektromobilität in der Schweiz

Development of CO2-emissions (Swiss perspective)

Relevance of renewable electricity (2035)

Potential drivetrain technologies in a decarbonised future

Challenges of biofuels

- Biofuels can have strong environmental impacts due to land use change effects and agricultural emissions
- Choice of environmentally friendly fuels is limited
- Best options are waste based, but these are limited in availability

Challenges of potential low carbon options

H2-FC

Biofuels (e.g. Biogas, Ehtanol, BtL)	•	Biofuels from cultivated biomass: land competition/ agricultural impacts Biofuels from waste: good performance, low availability Ligno-cellulosic biofuels: good performance (straw/ sustainable forestry)	
Power to Gas/ Liquid (e.g Methane)	•	Require higher amounts of electricity than the direct use in EVs	
BEV/PHEVs	•	Energy density of battery is low compared to typical fuels (will improve in the future and can be solved with hybrid approaches)	Postfossile Energieverso gungsoptionen für einen treibhausgasneutralen Verkehr im Jahr 2050: Eine verkehrsträger- übergreifende Bewertung
	•	Require higher amounts of electricity than EVs,	

uncertainty in future performance regarding

efficiency and costs.

M. Schmied, R. Zah et al.

Umwelt 🌍 Bundesamt

GHG Emission per km in 2050

техте 30/2015

Postfossile Energieversorgungsoptionen für einen treibhausgasneutralen Verkehr im Jahr 2050: Eine verkehrsträgerübergreifende Bewertung

M. Schmied, R. Zah et al.

> Umwelt 🎧 Bundesamt

Wrap-up

Conclusions

- With electric mobility within a strongly decarbonised context the impacts move from the use to the production phase (vehicle, renewable energy technologies).
- Pressure grows on the resource side (e.g. Copper) highlighting the need for effective recycling schemes and research in new materials. Sharing and multi-modal approaches can alleviate the pressure
- Biofuels and Power to Gas/Liquid solutions can play a relevant role in low carbon transportation models. Important to identify when to use renewable electricity directly in BEVs or for the production of PtoX-fuels or biofuels
- There is no optimal solution. Future transport schemes need to look at the best interplay between available technologies

Contact us

Andrea Del Duce/ Rainer Zah Quantis Schweiz/Deutschland Reitergasse 11 8004 Zürich Tel. +41 445 52 08 42 <u>andrea.delduce@quantis-intl.com</u> rainer.zah@quantis-intl.com

quantis-intl.com

Quantis

Quantis

 g^+

Quantis International

+Quantis