

Swiss Centre for Occupational and Environmental Health

Particulate Matter: Identification, mitigation and assessment

Michael Riediker Prof., Dr.sc.nat. Founding Director, SCOEH

Air is the biggest of the pollution problems

Ambient particles – complex substance mix

SCOEH

Health effects of PM

SCOEH

Heart	Infarction and Arrhythmias
Brain	Stroke, Dementia, Cognitive function
Lungs	Asthma, Allergies, COPD
Other	Diabetes, Obesity, Renal issues, Cancer

Understanding variability is important

- Many effects are not very relevant to the "average" people
- Most affected are the "ends" of the distribution

Example: Drop of IQ by 5 points in a population size of 100 Millions

The Lancet DOI: (10.1016/S0140-6736(17)32345-0)

Which particle properties play a role?

- Number
- Size
- Dimensions
- Surface
- Volume and Mass
- Composition
- Functionalisation
- Persistence
- Activity

How do properties change in a living system?

Large size range of Particulate Matter

Modified from Atmospheric Environment 38 (2004) 4347–4355

Picture taken by myself

Wikipedia.org - Bombus pascuorum

Modified from http://www.flugtagesalzgitter.de/ballone

Pollen: carriers of airborne allergens

Plants release pollen that contain allergens

Braun-Fahrländer et al. Eur Respir J 2004; 23: 407–413

Moulds, (still!) a frequent indoor problem

- Aspergillosis caused by airborne fungal spores
- Growth of fungus in lung
- Formation of toxic m-VOC
- 600,000 deaths per year worldwide from Aspergillus alone

http://www.michigan.gov/dnr/0,4570,7-153-10370_12150_12220-26360--,00.html

https://upload.wikimedia.org/wikipedia/commons/4/4a/Histopathologic_features_of_aspergillosis_including_the_pr esence_of_conidial_heads_PHIL_4335_lores.jpg

Sources of outdoor particles

Industry:

- Energy and heat production
- Exhaust from production process

Agriculture:

Forest fires:

Illegal burning

Accidents, lighting

- Engine exhaust
- Precursors gases
- Soil dust and spores

Roads:Engine exhaust

- Road, tire and brake wear
- Re-suspension of street dust

SCOFH

- Ships:
- Diesel engines
- Bulk ship unloading
- Ground transport

Secondary (SOA):

- + Ozone, NOx, VOC...
- + Light & Temperature

Indoor sources

SCOEH

Smoking

Cooking

- Biomass for heat
- Cooking particles
- Precursor gases

Light

- Flame particles
- Precursor gases
- (UV-light)

Work

- Housekeeping (PM+precursors)
- Repairs
- Devices
- Home workers
- Indoor work environments

Pictures from pixabay.com

Daly et al. Indoor Air 2010

Mitigation strategies

- Control release at the source (outdoors and indoors)
- Reduce entry into the building
- Remove from indoor air

Outdoor intervention: Dublin coal ban of 1990

Clancy et al. Lancet 2002;360: 1210-14

Indoor intervention: Smoking ban in restaurants

Myocardial infarctions:

- Comparison of Graubuenden (ban) and Lucerne (no ban)
- 2 year before and after

Respiratory problems (COPD)

- Hospital admissions in University Hospitals of Geneva
- Assessment of four periods

Swiss Med Wkly. 2011;141:w13206

Whole house systems and in-room systems

Whole house air system

- Effective if using good filters
- Can help reduce energy use ("Minergie-houses")
- Does not perform (well) when occupants open windows
- Counter-productive when not well designed and maintained (e.g. mould on filters, Legionella, ...)

In-room (portable) system

- Work often well in small rooms
- Often devices' flow rate too low for room size
- Often filters cannot be changed without getting exposed
- Counter-productive "ionic" cleaners (SOA-production!)

Plan, do, check, act

Damaged & clogged filters EPA-402-F-09-002

Continuous PM_{2.5} sensor for sensitive operations (Sensirion.com)

Periodical inspection by professionals (Wikimedia.org)

Control panels that are designed so that lay people can identify an alert (progressive) (flickr.com)

What, when and where to assess

	Planning location, windows, air intake	Performance control of ventilation systems	Understanding health complaints
Particulate Matter < 2.5 µm	 Identify sources Find PM_{2.5} maps (if existent) 	PM removed • At outlet? • In room?	Consider in cases of "dry air", unspecific irritations
Ultrafine (nanoscale) PM	 Identify sources Find NO₂ mass as a proxi 	Only consider for extra control near sources (busy roads)	Consider in cases of "dry air", unspecoc irritations
Pollen, spores, mould	Ide Rify sources	Check Or indicators of roould growth in system	Consider indicated by allergic symptoms, smell
Gases	Identify sourcesFind maps	 Check humidity Use to obtain air exchange rates (e.g. CO2, SF6) 	Strategy in function of symptoms and sources (in and out)

SCC

On market Handheld monitors for ultrafine particles nanoeos cl tsi.com grimm-aerosols.com Inexpensive networked PM_{2.5} sensors On market sensirion.ch Size-separated PM-collection for automated analysis **On market** statpeel.ch Real-time pollen sensors (and soon spores?) **Reaching market**

swisens.ch

Conclusion

- Particles of all sizes remain an important indoor health risk
- Clean outdoor air very important task for authorities
- Energy friendly and healthy houses are possible
- Still many open questions AND practical challenges
- Novel assessment methods opens way to new approaches (research, system feedback, periodic controls, regulation)

Schweizerisches Zentrum für Arbeits- und Umweltgesundheit

Thank you!

A special thank to German Environment Agency (Umweltbundesamt)

For more information: michael.riediker@scoeh.ch Or contact me via LinkedIn or ResearchGate