Carmen Nickel

Mobility of different nanomaterials in unsaturated soil columns

"Air Quality & Filtration "

Umwelt 🎧 Bundesamt Dessau, 10.10.2017

UNIVERSITÄT DUISBURG

Release of NM from products

www.haushaltsfee.org

www.pcrichard.de

Can Stock Photo

www.ruhrnachrichten.de

Nanomaterials in the Environment, Dessau 10.10.2017

Release of ENM in the environment

Nanomaterials in the Environment, Dessau 10.10.2017

Soils

Nanomaterials in the Environment, Dessau 10.10.2017

Mobility of three different TiO₂ nanomaterials in soil columns

Carmen Nickel¹, Bryan Hellack¹, Michael Stintz², Stephan Gabsch², Lothar Erdinger³, Thomas Kuhlbusch^{4,5}

- ¹ Air Quality & Filtration, IUTA e.V., Duisburg
- ² Research group mechanical Process Engineering, TU Dresden, Dresden
- ³ Universitätsklinikum Heidelberg, Department of Infectiology, Hygiene and Medical Microbiology, Heidelberg
- ⁴ BAuA, Dortmund, Germany

⁵Center for Nanointegration, University Duisburg-Essen, Germany

TiO₂ test nanomaterials

	NM102 (PC105)	NM103 (UV Titan M262)	NM105 (P25)
Crystalline form	anatase	rutile	anatase 86 % rutile 14 %
Primary particle shape	essentially spherical	essentially spherical	spherical
Coating	none	Al ₂ O ₃ + dimethicone (hydrophobic)	none
Primary particle size	15 – 25 nm	20 nm	21 nm
Particle size in suspension (pH 5) #	560 nm (SD 4.62)*	180 nm (SD 3.1)*	220 nm (SD 1.01)*
Zeta potential in suspension (pH 5)	+29 mV*	+26 mV (SD 1.06)*	+23 mV (0.4)*
Use	photo catalyst	cosmetics	photo catalyst, cosmetics
	PC105	UV Titan M262	Mag = 100.00 K X 200rm

* Average of DLS and Zetasizer measurements, 10 min sonication; n = 5

Ultrasonic homogenizer 200 W pulse 0.2/0.8 - 10 min 100 mL

Soil types

Pre-wetted with 0.01 M CaCl₂

columns

(soils)

• Application of the nanomaterials as suspension

Leaching in unsaturated soil

• Glas columns filled with the matrix

- Application of 0.01 M CaCl₂ solution on the top of the column for 48 h
- Chemical analysis of the eluate and different column segments

Carmen Nickel.

Methods based on OECD Guideline 312

Cambic Rendzina

Dystric Cambisol

Gleyic Podsol

Nanomaterials in the Environment, Dessau 10.10.2017

Background Ti: 0.42 % (4.2 g/kg)

Background Ti: 0.42 % (4.2 g/kg)

Background Ti: 0.19 % (1.9 g/kg)

Background Ti: 0.19 % (1.9 g/kg)

Nanomaterials in the Environment, Dessau 10.10.2017

Summary

Soil	NM102 (PC105)	NM103 (UV Titan M262)	NM105 (P25)
Dystric Cambisol	-	+	-
Conclusion	no significant transport detected	transport indicated, between the first and second segment	no significant transport detected
Cambic Rendzina	(+)	+	(+)
Conclusion	chemically no transport detected. SEM / EDX indicate a transport of single agglomerates	transport indicated, down to segment four	chemically no transport detected. SEM / EDX indicate a transport of single agglomerates

- Low mobility \rightarrow no risk for the Groundwater
- ICP-OES analysis Transport indicated for the coated NM in the soil with high CEC, pH, carbon content
 - Comparable particle size (NM103 and NM105) and zeta potential in suspension (all)
 - \rightarrow coating effect?

Troyan Horse Effect

Experimental design

- Saturation 0.01 M CaCl₂
- Application of 1cm spiked soil layer (Cu (43 mg/kg) or ¹⁴C TCC (2 mg/kg))
- Application of 100 ml P25 Suspension pH 5 test system and 100 ml DI water pH 5 reference system
- 48 h application of "rain" 42 ml/min 0.01 M CaCl₂
- Sampling of the eluate and soil
- Chemical analysis (Cu and Ti)
- Radioanalytic (¹⁴C TCC)
- Different diameter (12 cm)
- Glas wall sample omitted

Ti Transport – Example - Soil type Dystric cambisol (A01)

 \rightarrow Transport of isolated P25 agglomerates

Cu Transport

TCC Transport

iute

Reference:

Low mobility, no breakthrough of TCC, TCC concentartion higher as LOD only in the first 4 cm Dystric cambisol (A01) > Stagnic Iuvisol (A02) > Eutric cambisol (G03)

Test system:

Low mobility, no breakthrough of TCC, TCC concentartion higher as LOD only in the first 4 cm

→ No differences if P25 is available (slightly lower transport for soiltype A01)

Conclusion

- Low mobility of Ti ENM (only single agglomerates)
- Low Cu and very low TCC transport
- Soiltype with the lowest pH (5.7) and CEC (38 mmolc/kg) shows the highest transport Dystric Cambisol
- Significant lower Cu transport if P25 is available for all soiltypes
- No significant effect of P25 on TCC transport

- → Accumulation of Ti or Cu in the upper soil layers → higher availability for plants → concentration hot spots possible
- → Transferability of other subtances → lower transport of nutrients possible?

Outlook

- Literature \rightarrow No / low mobility of ENM in soils
- Are these information enough for a comprehensive Risk Assessment?

Open questions?

- Some ENM show a higher mobility
- \rightarrow Identification of important ENM paramaters which determine the behaviour
- ightarrow Identification of important soil parameter like AWI affecting the ENM mobility
- Transformation processes \rightarrow change of the mobility possible?
- Relevance of the low mobility \rightarrow Concentration hot spots?

→ Bioavailability for soil organisms / plants?

• Lack of long term studies and mesocosm studies

Thank you for your attention!!!

Bryan Hellack, Christof Asbach, Stephan Gabsch, Michael Stintz, Lothar Erdinger, Hanna Maes, Andreas Schäffer, Thomas Kuhlbusch

UniversitätsKlinikum Heidelberg

🛟 eurofins

Funding:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety