

ТШП

Measurement of manufactured nanomaterials in environmental samples

Andreas Wimmer

on behalf of Prof. Dr. Michael Schuster

Technical University of Munich, Germany Department of Chemistry Analytical Chemistry (Prof. Dr. M. Schuster)

Scientific Stakeholder Meeting on Nanomaterials in the Environment 10th -11th of October, 2017 German Environment Agency, Dessau-Roßlau

Nanomaterials in the aquatic environment

NP origin, challenges & solutions

challenges for the determination of NPs in
environmental samples:

- low particle concentrations in the <u>ng/L</u>-range
- complicated <u>matrices</u> and interferences
- separation of soluble and particular species (i.e. Ag(I) / AgNP)

solution approach:

- separation (and enrichment) of particles from the matrix
- hyphenation to selective and sensitive determination techniques
- no particle mutation

Andreas Wimmer | 10th - 11th October 2017 | German Environment Agency, Dessau-Roßlau

Rh NF

Cloud Point Extraction

Cloud-Point-Extraction (CPE)

general procedure

Duester, Fabricius, Jakobtorweihen, Philippe, Weigl, Wimmer, Schuster, Nazar, Anal. Bioanal. Chem. 2016

Cloud-Point-Extraction

a versatile toolbox for nanomaterial analysis in the environment

Is there any co-extraction of ionic silver?

Does the natural matrix influence the co-extraction of Ag(I)?

validation experiments

determination of **co-extraction rates** for Ag(I) during CPE using **real water matrix** (stream, no silver background, TOC ≈ 2.5 mg/L)

real water samples spiked with Ag(I) (5, 10, 50 ng/L)

samples were prepared twice: **CPE** and **no CPE** samples were of the same volume and same matrix

measured co-extraction of Ag(I) in real water matrix ranges form 6.3 to 25.3 %

 \rightarrow no significant influence of the natural matrix!

Is there any influence of particle coatings on the CPE efficiency?

recovery rates with 13 different AgNPs: 1,00 Aq-only-NP: Laserablation from Ag(0) in H_2O CA@Ag-NP: Citrate PVP10@Ag-NP: Polyvinylpyrolidone extraction efficiency 0,75 (PVP, 10 kDa) PVPSA@Ag-NP: PVP Sigma Aldrich MUA@Ag-NP: 12-Mercaptoundecanoic Acid 0,50 · MSA@Ag-NP: Mercaptosuccinic Acid BSA@Ag-NP: **Boval Serum Albumine** Lys@Ag-NP: Lysine 0,25 Cys@Ag-NP: Cysteine starch@Ag-NP: Starch AgCI@Ag-NP: Chloride 0,00 -L PNPSA@AgNP L pupilo@Ag.NP L MUA@Ag-NP L MSA@Ag.NP - BSY@YG-Nb Aq2S@Aq-NP: Sulfide - CA@AgNP Ag-only-NP Ag3PO4-NP: Phosphate Analytics: TEM-EDX and ATR-FT-IR

 \rightarrow extracted AgNP = Σ (Ag₂S, AgCI, ... NP)

G. Hartmann, T. Baumgartner, M. Schuster; Anal. Chem. 2014, 86, 790-796

L LYS@AGMP

- CYS@Ag-NP

1_ statch@Ag_NP

AgCI@Ag-NP

Ag2S@Ag.NP

additional validation

no influence of natural occurring **matrix components** (ammonium, chloride, phosphate, nitrate, humic acid, TiO_2 -µ-particles) on the **extraction efficiency of AgNPs** and **Ag(I) co-extraction**

 \checkmark

no influence on particle size distribution before and after CPE

CPE for AuNPs

pH adjustment by adding HCI

extraction efficiency for AuNPs 89 - 95 %

CPE does not affect AuNPs' size distribution

advantages of CPE-ET-AAS:

- ✓ very low detection limits < 1 ng/L</p>
- ✓ high selectivity (Zeeman correction)
- high matrix tolerance
 (CPE + temperature program of ET-AAS)
- ✓ small sample volumes needed (20 µL)
- ✓ no nebulizer needed
- ✓ surfactant rich phase is measured after low dilution (100-400 µL) → Excellent enrichment factors

Andreas Wimmer | 10th - 11th October 2017 | German Environment Agency, Dessau-Roßlau

CPE hyphenated to sp-ICP-Q-MS

single-particle Inductively Coupled Plasma Quadrupole Mass Spectrometry

Andreas Wimmer | 10th - 11th October 2017 | German Environment Agency, Dessau-Roßlau

12

formally hidden particle

background caused by dissolved Ag(I) species

CPE reduces the ionic

ETAAS

signals become now visible

 \rightarrow very small particles are detectable (depending on the element, Ag 10 nm, Rh

3 nm) – up to 2 ng/L

concentration

nebulizer-system, dilution, ...

some challenges:

Ag⁺

10 000 ng/L

1 000 ng/L

500 ng/L

0 ng/L

CPE

Time / s

Median: 368 cp

4000

3000

2000

1000

2000

1000

2000

1000

2000

AgNP 60 nm 10 ng/L

signal intensity / cps

4000

3000

2000

1000

2000

1000

2000

1000

2000

1000

Median: 2572 cps

Median: 482 cps

Median: 216 cps

Median: 7 cps

sp-ICP-MS concentration + particle size

no CPE

Time / s

CPE hyphenated to sp-ICP-Q-MS

determination of particle size distributions down to 10 nm

Andreas Wimmer | 10th - 11th October 2017 | German Environment Agency, Dessau-Roßlau

funded by Bavarian State Ministry of the Environment and Consumer Protection

for more information...

CPE method and validation

Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry. Georg Hartmann, Michael Schuster. *Analytica Chimica Acta 761* (**2013**) 27-33.

Ultra-trace determination of silver nanoparticles in water samples using cloud point extraction and ETAAS. Georg Hartmann, Christine Hutterer, Michael Schuster. *Journal of Analytical Atomic Spectrometry* 28 (2013) 567-572.

Influence of Particle Coating and Matrix Constituents on the Cloud Point Extraction Efficiency of Silver Nanoparticles (Ag-NPs) and Application for Monitoring the Formation of Ag-NPs from Ag+. Georg Hartmann, Tanja Baumgartner, Michael Schuster. *Analytical Chemistry 86* (**2014**) 790-796.

Can cloud point-based enrichment, preservation, and detection methods help to bridge gaps in aquatic nanometrology? Lars Duester, Anne-Lena Fabricius, Sven Jakobtorweihen, Allan Philippe, Florian Weigl, Andreas Wimmer, Michael Schuster, Muhammed Faizan Nazar. *Analytical and Bioanalytical Chemistry* (**2016**) (DOI 10.1007/s00216-016-9873-5, <u>open access</u>).

for more information...

Examples for application to determine AgNPs in environmental samples

Quantification of Nanoscale Silver Particles Removal and Release from Municipal Wastewater Treatment Plants in Germany. Lingxiangyu Li; Georg Hartmann, Markus Doeblinger et al. *Environmental Science & Technology 47* (**2013**) 7317-7323.

To What Extent Can Full-Scale Wastewater Treatment Plant Effluent Influence the Occurrence of Silver-Based Nanoparticles in Surface Waters?. Lingxiangyu Li, Monika Stoiber, Andreas Wimmer, Zhenlan Xu, Claus Lindenblatt, Brigitte Helmreich, Michael Schuster. *Environmental Science and Technology* 50 (**2016**) 6327-6333 (DOI 10.1021/acs.est.6b00694).

ТШП

Appendix

AgNPs in WWTPs

Water sample collection

- → 24 h composite samples every 2 h sampling
- → 2 full-scale municipal plants with different biological treatment techniques and sewer systems

Water sample pretreatment and AgNP concentration and size analysis

→ CPE + ET-AAS / sp-ICP-MS

Aims

- → Removal efficiency in different treatment steps
- → Is there any season dependence?
- → AgNP sizes in influent and effluent

Article

pubs.acs.org/est

To What Extent Can Full-Scale Wastewater Treatment Plant Effluent Influence the Occurrence of Silver-Based Nanoparticles in Surface Waters?

Lingxiangyu Li,[†] Monika Stoiber,[†] Andreas Wimmer,[†] Zhenlan Xu,[‡] Claus Lindenblatt,[§] Brigitte Helmreich,^{*,§} and Michael Schuster^{*,†}

DOI: 10.1021/acs.est.6b00694 Environ. Sci. Technol. 2016, 50, 6327–6333

Waste Water Treatment Plant – Scheme

average flow rate of 5,300 m³/d (population served ~26,000). (b) WWTP 2 with an average flow rate of 160,000 m³/d (population served ~850,000).

Andreas Wimmer | 10th - 11th October 2017 | German Environment Agency, Dessau-Roßlau

Characterization of AgNPs in WWTP Waters

- → Significant decreases in AgNP concentrations along the treatment process
- → Main removal step: activated sludge denitrification (> 96.4 %)
- → Season-independent removal
- → Influent: 357 ng/L (winter) to 10.1 ng/L (summer) / Effluent: < 11 ng/L
- → Activated sludge (WWTP b) >> Trickling filter (biofilm,WWTP a)

Andreas Wimmer | 10th - 11th October 2017 | German Environment Agency, Dessau-Roßlau

Characterization of AgNPs in WWTP Waters

- → sp-ICP-MS measurement of WWTP samples
- → Slight variation in size distributions of AgNPs through WWTP

Li, Stoiber, Wimmer, Xu, Lindenblatt, Helmreich & Schuster, ES&T 2016

ТШП

