Mobile Luftreiniger: Nur als Ergänzung zum Lüften sinnvoll

Schüler hören einem Lehrer zu.zum Vergrößern anklicken
In Klassenzimmern sind viele Menschen auf engem Raum.
Quelle: Photo by NeONBRAND on Unsplash

Mobile Luftreinigungsgeräte versprechen, virushaltige Partikel in Innenräumen zu reduzieren. Ob die Minderungen ausreichen, eine Infektionsgefahr in dicht belegten Klassenräumen abzuwenden, ist nach jetzigem Wissensstand unsicher. Da die Geräte weder CO2 noch Wasserdampf aus der Raumluft entfernen, empfiehlt das UBA weiter auch in der kalten Jahreszeit die Fensterlüftung als prioritäre Maßnahme.

Dieser Text bildet den Stand am 11.02.2021 ab. Hier finden Sie die aktuelle Einschätzung des UBA zur Thematik.

Vor dem Hintergrund einer möglichen Übertragung des SARS-CoV-2-Virus über ⁠Aerosole⁠ in Klassenräumen werden mobile Luftreinigungsgeräte (d. h. frei im Raum aufstellbare Geräte) als Maßnahme diskutiert, um virushaltige Aerosolpartikel aus der Luft zu entfernen. Mobile Luftreinigungsgeräte sind je nach technischer Auslegung (Prinzip; Dimensionierung) in der Lage, Viren aus der Luft zu entfernen bzw. zu inaktivieren. Allerdings hängt ihre Wirksamkeit in realen Räumen neben den technischen Spezifikationen auch von den Aufstellbedingungen vor Ort und von der Luftausbreitung im Raum ab.

Da mobile Luftreinigungsgeräte nicht das in Klassenräumen anfallende Kohlendioxid (CO2) und den Wasserdampf aus der Raumluft entfernen, können sie nicht als vollständigen Ersatz für Lüftungsmaßnahmen eingesetzt werden, sondern allenfalls als Ergänzung ( Kommission Innenraumlufthygiene (IRK), Stellungnahme vom 16.11.2020 [1]).

Priorisierung der Lüftungsmaßnahmen an Schulen aus Sicht des UBA

Das Umweltbundesamt empfiehlt, Lüftungsmaßnahmen an Schulen in folgender Rangfolge zu betrachten:

  1. In Schulen mit raumlufttechnischen (RLT-)Anlagen sollen für die Dauer der Pandemie die Frischluftzufuhr erhöht werden, und die Betriebszeiten der Anlagen verlängert werden. Arbeitet die Anlage mit Umluft, ist der Einbau zusätzlicher Partikelfilter (Hochleistungsschwebstofffilter H 13 oder H 14) zu erwägen.
  2. In Schulen ohne RLT-Anlagen (schätzungsweise 90 % der Schulen) soll intervallartig über weit geöffnete Fenster gelüftet werden, wie in der gemeinsam mit der Kultusministerkonferenz (KMK) verfassten UBA-Handreichung zum Lüften in Schulen vom 15.10.2020 beschrieben. Diese Maßnahmen sind rasch und einfach umsetzbar und bieten einen wirksamen Schutz, weil die Außenluft nahezu virenfrei ist. Die im Winter unvermeidliche Abkühlung der Raumluft durch Stoßlüften hält nur für wenige Minuten an und ist aus medizinischer Sicht unbedenklich. ⁠CO2⁠-Sensoren können als Orientierung dienen, ob und wie rasch die Frischluftzufuhr von außen gelingt.
  3. Sofern sich Fenster in Klassenräumen nicht genügend öffnen lassen, sollte geprüft werden, ob durch den Einbau einfacher ventilatorgestützter Zu- und Abluftsysteme (z.B. in Fensteröffnungen) eine ausreichende Außenluftzufuhr erreicht werden kann.

Sind die Maßnahmen unter 1 bis 3 nicht anwendbar, ist ein Raum aus innenraumhygienischer Sicht nicht für den Unterricht geeignet. Sollen solche Räume dennoch zum Unterricht genutzt werden, kann der Einsatz mobiler Luftreinigungsgeräte erwogen werden (Ausnahmefall).

Um die Wahrscheinlichkeit einer Infektion über Aerosole wirksam zu vermindern, wird eine Reinigungsleistung des Geräts gefordert, die mindestens dem sechsfachen des Raumvolumens pro Stunde entspricht. Bei einem Klassenraumvolumen von zum Beispiel 200 m³ entspricht dies einer Reinigungsleistung von mindestens 1.200 m³ an keimfreier Luft pro Stunde.

Technische Optionen bei mobilen Luftreinigungsgeräten

Im Grundsatz sind vier Technologien bei Luftreinigern zu unterscheiden:

  • Filtertechnologien
  • UV-C Technologien
  • Ionisations- und Plasmatechnologien
  • Ozontechnologien

Hierzu ist im Einzelnen anzumerken:

1. Filtertechnologie

Mobile Filtergeräte sollten möglichst mit hocheffizienten Gewebefiltern (Filterklassen H 13 oder H 14)) ausgestattet sein, da nur diese eine vollständige Entfernung von Viren aus der durch das Gerät gesaugten Luft gewährleisten. Feinfilter der Klassen F7 bis F9 (alte Bezeichnung) bzw. ISO ePM2,5 65% bis ISO ePM1 80% (neue Bezeichnung), wie sie z.B. in herkömmlichen raumlufttechnischen Anlagen (RLT-Anlagen) mit zwei Filterstufen zum Einsatz kommen, lassen einen Anteil der Aerosolpartikel in der behandelten Luft übrig. Filtergeräte mit hocheffizienten Filtern sind in der Lage, die Zahl der die Aerosolpartikel in einem Raum zu senken. Um die bestmögliche Wirkung mit Filtergeräten zu erzielen und über die Dauer der Betriebszeit zu erhalten, müssen die Filter in der Regel nach einer gewissen Betriebszeit gewechselt werden. Je nach Staub- und Partikelbelastung kann das nach einem halben bis einem Jahr der Fall sein. Hierzu sind Fachkenntnisse oder geschultes Personal erforderlich. Um keinen störenden Geräuschpegel im Raum entstehen zu lassen, sollten vor Beschaffungen entsprechende Kenndaten zur Geräuschentwicklung vom Hersteller eingeholt werden.

2. UV-C Technologie

UV-C Strahlung ist vom Grundsatz her in der Lage, Mikroorganismen wie Bakterien und Viren zu inaktivieren. Geräte mit UV-C Strahlungsquellen werden schon seit langem zur Entkeimung von Oberflächen z. B. in Laboren oder zur Raumluftdesinfektion in lebensmittelverarbeitenden Betrieben eingesetzt. Für die Wirksamkeit gegen infektiöse Aerosole in einem Innenraum ist entscheidend, ob ein Gerät einen ausreichend großes Luftvolumen desinfizieren und die gereinigte Luft gut im Raum zirkulieren kann. Die Wirksamkeit ist abhängig von der Bestrahlungsintensität und von der Bestrahlungszeit der Luft im Gerät. Für Augen und Haut stellt UV-C Strahlung ein gesundheitliches Risiko dar. Deshalb wird der Einsatz dieser Strahlungsquellen als offene UV-C Lampe und auch in mobilen Luftreinigern vom UBA für den nicht gewerblichen Einsatz als kritisch betrachtet. Geräte sollten in öffentlichen Bereichen wie Schulen nur eingesetzt werden, wenn gesichert ist, dass kein UV-Licht in den Raum freigesetzt werden kann. Die IRK empfiehlt in ihrer Stellungnahme vom 16.11.2020 daher a) den Nachweis der Gerätesicherheit und b) den Nachweis der Wirksamkeit – als Prüfung des eingesetzten mobilen Geräts. In privaten Wohnungen sieht das UBA den Einsatz solcher Geräte aus Sicherheitsgründen weiterhin kritisch, denn hier bestehen meist wenig Kontrollmöglichkeiten, was die sachgerechte Verwendung, Wartung und den bestimmungsgemäßen Gebrauch angeht. Mobile Geräte mit UV-C-Technik haben gegenüber solchen mit Filtration den Vorteil der meist geringeren Geräuschentwicklung im Betrieb.

3. Ionisations- und Plasmatechnologie

Auch Ionisation und Plasma sind in der Lage, Mikroorganismen wie Bakterien und Viren zu inaktivieren. Im Rahmen von Luftreinigungsanlagen findet diese Technologie seit vielen Jahren Anwendung. Tendenziell sind auch die Geräte wartungsärmer als solche mit Filtration, weil keine Filter zu ersetzen sind. Auch die Geräuschentwicklung ist im Allgemeinen geringer als bei filtrierenden Geräten. Dem UBA liegen derzeit jedoch keine Daten vor, ob die Effizienz der im Handel befindlichen Geräte ausreicht, um einen ausreichenden Schutz gegen eine Infektion mit SARS-CoV-2 in großen und dicht belegten Innenräumen wie Klassenräumen zu gewährleisten. Generell sollte vor Beschaffung entsprechender Geräte eine Wirksamkeitsprüfung vom Hersteller eingeholt werden. Bei Ionisations- und Plasmatechnologie kann aufgrund des physikalischen Prinzips im Gerät Ozon entstehen. Es wird empfohlen, Herstellerinformationen einzuholen, inwieweit Ozon als unerwünschtes Nebenprodukt bei einem bestimmten Gerät auch in den Innenraum gelangen kann.

4. Ozontechnologie

Eine gezielte Behandlung von Raumluft mit Ozon (auch während der Durchleitung der Luft durch einen mobilen Luftreiniger) lehnt das UBA grundsätzlich ab. Ozon ist ein Reizgas und kann mit anderen Stoffen, allen voran mit flüchtigen organischen Verbindungen (⁠VOC⁠), chemisch reagieren und dabei unbekannte Folgeprodukte bilden. Diese Kategorie von Luftreinigern ist ungeeignet für eine Anwendung in Räumen, in denen sich Personen befinden.

Für eine größtmögliche Wirksamkeit von mobilen Luftreinigungsgeräten (egal mit welcher Technologie sie arbeiten) ist die sorgfältige Planung und Realisation des Aufstellungsortes im Raum und die Berücksichtigung der Raumgegebenheiten (Raumvolumen, Luftführung und Luftströmungen im Raum) von entscheidender Bedeutung. Die Reinigungsleistung muss in Abhängigkeit der Raumgröße und der Anzahl der Personen im Raum einstellbar sein. Bei Geräten, deren Wirkung auf einer Luftreinigung innerhalb des Geräts beruht (wie z.B. Filtergeräte), sind die Ansaug- und Abblasrichtung der Luft mit entscheidend dafür, dass die Geräte wesentliche Anteile der Mischluft im Raum erfassen und als gereinigte Luft wieder in den Raum abgeben können.

In der Produktliteratur finden sich häufig Prüfberichte zu Luftreinigungsgeräten, wo zu Beginn des Experiments ein Raum einmalig mit Partikeln gefüllt wird, und anschließend Abklingkurven infolge der Luftreinigung ausgewertet werden. Solche Prüfberichte erwecken den Eindruck, man könne die Konzentration von Aerosolen in einem Realraum beliebig reduzieren. Die reale Situation ist jedoch verschieden, insofern eine infektiöse Person kontinuierlich virushaltige Aerosole in die Raumluft emittiert. Ein mobiles Gerät kann die Konzentration von Aerosolen in einer realen Situation somit reduzieren, aber zu keinem Zeitpunkt auf null bringen. Sind mehrere infektiöse Personen anwesend, würde die Reinigungswirkung mobiler Geräte in Bezug auf virushaltige Aerosole entsprechend weiter sinken. Mobile Luftreinigungsgeräte dürfen daher nicht als absoluter Schutz vor infektiösen Aerosolen angesehen werden.

Fazit

Zur Einschätzung der Leistungsfähigkeit mobiler Luftreinigungsgeräte benötigt man Prüfnachweise, dass ein Gerät die geforderte Menge an keimfreier Luft (sechsfaches Raumvolumen pro Stunde) breitstellen kann. Im Fall von Techniken, welche ihre Wirkung durch Inaktivierung der Erreger entfalten, erfordern diese Prüfungen Versuche mit echten Erregern (Bakterien, Viren) unter den geplanten Betriebsbedingungen und nicht nur den grundsätzlichen Nachweis des Effekts unter Laborbedingungen. Vor Beschaffungen wird empfohlen, entsprechende Prüfnachweise der Geräte unter Realbedingungen von den Herstellern einzuholen.

Da mobile Luftreinigungsgeräte nicht das in Klassenräumen anfallende Kohlendioxid und den Wasserdampf aus der Raumluft entfernen, können sie nicht als vollständigen Ersatz für Lüftungsmaßnahmen eingesetzt werden, sondern allenfalls als Ergänzung Das Umweltbundesamt empfiehlt daher weiter auch in der kalten Jahreszeit die Fensterlüftung als prioritäre Maßnahme. Die Kommission für Innenraumhygiene (IRK) ist in Ihrer Stellungnahme vom 16.11.2020 zum selben Schluss gekommen und hat die hier beschriebenen Empfehlungen weiter detailliert [1].

Langfristige und nachhaltige Ziele

Aus gesundheitlichen und Nachhaltigkeits-Gründen sollten perspektivisch alle dicht belegten Veranstaltungsräume in Schulen und Bildungseinrichtungen mit raumluft-technischen (RLT)-Anlagen ausgerüstet bzw. nachgerüstet werden [7]. Solche Anlagen beseitigen die Vielzahl innenraumhygienischer Probleme in dicht belegten Räumen (Luftgetragene Erreger, Kohlendioxid, Wasserdampf, Gerüche) in einem Gang. Stand der Technik sind Anlagen mit Wärmerückgewinnung, welche die Außenluft energiesparend mittels der Abluft anwärmen. Als „Komfortlüftung“ werden Systeme bezeichnet, die eine kontrollierte Erwärmung oder auch Abkühlung (Sommer) erlauben. Solche Systeme sind auch als dezentrale Anlagen verfügbar, mit denen Räume einzeln ausgestattet werden können.

Quellen

[1] IRK (2020): Einsatz mobiler Luftreiniger als lüftungsunterstützende Maßnahme in Schulen während der SARS-CoV-2 Pandemie. Stellungnahme der Kommission Innenraumlufthygiene (IRK) am Umweltbundesamt. https://www.umweltbundesamt.de/presse/pressemitteilungen/corona-in-schul...

[2] Kähler, C. J., T. Fuchs, B. Mutsch, R. Hain (2020): Schulunterricht während der SARS-CoV-2 Pandemie ‒ Welches Konzept ist sicher, realisierbar und ökologisch vertretbar? doi: 10.13140/RG.2.2.11661.56802

[3] Curtius, J., M. Granzin, J. Schrod (2020): Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. medRxiv 2020.10.02.20205633; doi: https://doi.org/10.1101/2020.10.02.20205633

[4] Exner, M. et al. (2020): Zum Einsatz von dezentralen mobilen Luftreinigungsgeräten im Rahmen der Prävention von COVID-19. Stellungnahme der Deutschen Gesellschaft für Krankenhaushygiene (DGKH), Stand 25.9.2020.

[5] Gunschera, J., Markewitz, D., Bansen, B., Salthammer, T., Ding, H., 2016. Portable photocatalytic air cleaners: efficiencies and by-product generation. Environ Sci Pollut Res 23, 7482–7493. https://doi.org/10.1007/s11356-015-5992-3

[6] Siegel, J.A., 2016. Primary and secondary consequences of indoor air cleaners. Indoor Air 26, 88-
96. https://doi.org/10.1111/ina.12194

[7] IRK (2015): Stellungnahme der Innenraumlufthygiene-Kommission zu Luftreinigern, Bundesgesundheitsblatt 58, S. 1192

[8] UBA (2017): Anforderungen an Lüftungskonzeptionen in Gebäuden. Teil I: Bildungseinrichtungen https://www.umweltbundesamt.de/publikationen/anforderungen-an-lueftungsk...

Richtig Lüften im Schulalltag. So geht es schnell und effizient! Stoßlüften: Während des Unterrichts alle 20 Minuten mit weit geöffneten Fenstern lüften. Wie lange wird gelüftet? Im Winter drei bis fünf Minuten, im Sommer zehn bis zwanzig Minuten. Nach jeder Unterrichtsstunde von 45 Minuten über die gesamte Pause lüften. Querlüften: Wenn möglich, gegenüberliegende Fenster gleichzeitig weit öffnen. Beim Stoß- und Querlüften sinkt die Raumtemperatur nur um wenige Grad ab und steigt schnell wieder an.
Infografik Lüften in Schulen

Download in verschiedenen Formaten hier: https://www.umweltbundesamt.de/dokument/infografik-lueften-in-schulen

Quelle: Umweltbundesamt
Teilen:
Artikel:
Drucken
Schlagworte:
 SARS-CoV-2  COVID-19  Schule  Lüften